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Patterns and localized structures in a hybrid non-equilibrium
Ising model
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Abstract

We study a hybrid non-equilibrium pattern formation model combining short-scale Ising model with a continuous slow or
long scale inhibitor. The computation combines alternates Monte-Carlo algorithm with updating of the inhibitor field. It is very
fast, and allows us to study the influence of various factors, such as scale ratios, coupling strength, bias, temperature (level of
noise), anisotropy, etc., on the pattern formation and behavior of emerging non-equilibrium structures.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

Studies of symmetry breaking and pattern forma-
ion in non-equilibrium systems are commonly based
n reaction–diffusion models[1,2]. A dazzling variety
f patterns were obtained using either representative
quations of Ginzburg–Landau type or ad hoc mod-
ls, such as Brusselator or FitzHugh–Nagumo equa-

ions containing “activator” and “inhibitor” variables
ith widely separated spatial and temporal scales. Less
ommon is a cellular automaton (CA) approach[3–6],
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where the activator is modeled by cell elements w
can switch between a definite number of states (e.g
scribed by a binary variableu = {0,1}) in such a way
that the state of any element at a given time step i
termined by the states of this element and its neigh
at the previous step. Recent interest to pattern fo
tion on microscopic and nanoscopic scales, espec
in surface restructuring and catalysis[7], brought abou
more intricate models explicitly including intermole
ular interactions: nonlocal “mesoscopic” models
various applications of Monte-Carlo (MC) techniqu
Both reaction–diffusion modeling and MC compu
tions become technically difficult and lose compu
tional efficiency under conditions (rather typical
surface reactions and transport), when characte
times and diffusional ranges of different species
widely separated. In reaction–diffusion computati
this necessitates introducing fine grid fitting the sh
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est relevant scale. Practical considerations dictate using
modest scale ratios in numerical studies of model equa-
tions of FitzHugh–Nagumo (FN) type[8], which makes
it difficult to compare numerical results with analytical
results obtained in the “sharp interface" limit when the
scale ratio tends to infinity[9–13]. MC computations
are short-scale by their nature and cannot be extended
to a macroscopically large region at reasonable cost.
Moreover, they are very sensitive to disparity of charac-
teristic times of alternative transitions that causes waste
of computing time in simulations based on a common
importance-sampling algorithm . CA computations are
more flexible in this respect, as they allow for different
averaging kernels and distinct dynamic algorithms for
“activator” and “inhibitor” particles[5,6].

Our choice is ahybrid model that combines MC
computations for a fast short-scale component of the
model with a continuous description of a long-scale
or slow component. Hybrid computations of this kind
have been recently applied in modeling of CO oxidation
on Pt(1 1 0) , where the main emphasis was on realistic
description of surface reconstruction and roughening
coupled to kinetic oscillations. The aim of the present
communication is different: setting up a simple and ver-
satile model enabling us to study qualitative features of
non-equilibrium patterns. The model described below
can be viewed as a hybrid version of the FN model. The
latter exists in two versions: the original version with
a fast activator and slow non-diffusing inhibitor that
generates propagating waves, and the version with a
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diffusive inhibitor equation, and the results of compu-
tations are discussed inSections 4 and 5.

2. Continuous and discrete equilibrium models

The Ising model can be viewed as a discrete ana-
log of the nonlinear reaction–diffusion equation (called
also real Ginzburg–Landau or Allen–Cahn model)

ut = ∇2u+ u− u3, (1)

where all coefficients have been rescaled to unity. A
generalized asymmetric dimensional form of this equa-
tion can be derived from the energy functional

F =
∫
Ldx, L = 1

2K|∇u|2 + V (u) + εW(u),

(2)

where K is rigidity coefficient, V is a symmetric
double-well potential, andW is an antisymmetric cor-
rection, which is scaled byε	 1 to make its action
comparable to that of surface tension for structures of
a characteristic size large compared to the effective in-
terface thickness. The evolution equation

χ−1ut = K∇2u− V ′(u) − εW ′(u) (3)

is derived from(2) by applying the dissipative dy-
namics principleut = −χδF/δu, whereχ is mobility
coefficient.Eq. (1) with time scaled by (χT0)−1 and
length by

√
K/T0 corresponds to the particular case
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ong-scale inhibitor that generates Turing patterns
olitary spots. The behavior of hybrid counterpart
oth models is discussed inSections 4 and 5.

Our model is very much different from the cel
ar automaton version of the FN model in Ref.[14]
here MC dynamics imitated fictitious reactions f
ally generating respective reaction–diffusion eq

ions according to the mass action law. It differs as
rom CA models[4–6]where cells were modeled as
itable elements “firing” with a probability dependi
n their neighborhood and, in later models, modifie
obile inhibitor particles.[5,6]. Aiming at the simples
ossible scheme, we use the classical two-state
odel as a symbolic analog of an activator specie
bistable reaction–diffusion equation. The connec
etween these two models is discussed inSection 2.
he non-equilibrium model is set up (Section 3) by
oupling with either slow diffusionless or long-sc
(u) = 1/4T0(1 − u2)
2
,W(u) = 0, whereT0 is an ap

ropriate energy scale. The bias potential can be
en in such a way that it does not affect the positio
quilibria, e.g.W(u) = T0u(1 − 1/3u2).

The simplest discrete analog ofEq. (1) is MC com-
utation of transitions between two alternative st
= ±1 on a square lattice with transition probabilit

= min{1
2e−[E]/T , 1}, (4)

here [E] is the change of energy resulting from
ip of u. In the symmetric caseE is proportional to
he numbern (0 ≤ n ≤ 4) of nearest neighbors wi

different value ofu; the proportionality constant
he interaction coefficientJ > 0. If the energies of th
lternative states are biased by some value 2εE0, the
nergy of a single cell is computed as

= εuE0 + Jn. (5)
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A comparison between the continuous and discrete
equilibrium models can be found in a recent publica-
tion [15]. The correspondence between the two is es-
tablished by comparing the characteristic length and
time scales, which are all ofO(1) when the continu-
ous model is scaled as inEq. (1) and the length and
time units coincide, respectively, with the cell size
and Monte-Carlo cycle (MCC), i.e. the time interval
wherein one transition attempt occurs, on the aver-
age, in each cell. More precisely, MCC can be identi-
fied with the characteristic timeτ = (χ|V ′′(u0)|/u0)−1

computed for some representative value ofu0, say
that corresponding to one of the stationary states, e.g.
τ−1 = 2χT0 for the symmetric quatric potential, or
τ = 1/2 for the dimensionless model(1).

The rigidity coefficient in the dimensional continu-
ous model(3) equivalent to the MC algorithm is com-
puted by comparing the the surface energy of a planar
interface separating “up” and “down” domains

σ0 = K

∫ ∞

−∞
u′(x)2 dx =

√
KT0

2

∫ 1

−1
(1 − u2) du

= 2
3

√
2KT0. (6)

with the Onsager surface tension[16]

σ1 = J
(

2 − T

J
ln coth

J

T

)
. (7)

This gives the correspondence
√

2KT0 = 3J at zero
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E0 = v and the equation ofv is linear. We shall con-
sider two hybrid models. In the first model (Section
4), the inhibitor is slow and non-diffusing and obeys
locally the dynamic equation

γ−1vt = −v− ν + µu, (8)

whereν, µ are, respectively, bias and coupling param-
eters andγ−1 is the characteristic time. Sincev can
be rescaled, the relevant parameters are the products
εν, εµ. Computations usingEqs. (4), (5) and (8) are
carried out by alternately updating the values of the bi-
nary variableu = ±1 during one MCC and updating
the values of the continuous variablev in each cell by
itegratingEq. (8) using the fourth-order Runge-Kutta
method during the time interval�t, which is identi-
fied with the duration of MCC. In the second model
(Section 5), the inhibitor is rapidly diffusing and obeys
the linear reaction–diffusion equation with a diffusivity
ε−2D large compared to theO(1) effective diffusivity
of the binary variable.

γ−1vt = ε−2D∇2v− v− ν + µ〈u〉, (9)

where〈· · ·〉 denotes averaging over an area large com-
pared to the Ising cell size. This equation is solved on
a “macrogrid” with the units ofε−1 size; the inhibitor
values on the macrogrid nodes are updated alternately
with MCC updates ofu, using the alternating-direction
implicit scheme[17]. The values ofu are averaged over
each macrogrid unit. The boundary conditions are pe-
r
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emperature. The decrease of surface tension at h
emperatures leading to an effective interface wide
nd increased fluctuations does not have a counte

n a continuous deterministic model. The latter defi
nly the intrinsic interface width, while MC comp

ation based on the Ising model gives also inter
idening due to capillary waves. With growing flu

uations, the surface tension vanishes atT/J > 2.269,
nd the “up” and “down” phases cease to be sepa
eyond this point.

. Hybrid non-equilibrium models

A non-equilibrium hybrid model imitating the F
ystem is constructed by making the bias energyE0
ependent on the “inhibitor” fieldv described by
eaction–diffusion equation. In the simplest vers
iodic in all computations.

. Diffusionless model

The diffusionless model based onEq. (8) simulates
xcitable behavior at moderate values of the coup
arameterµ and oscillatory behavior when coupli

s very strong. A simulation run for a symmetric c
ν = 0) starting from uniformv = 0 and random initia
alues ofu shows, after a short coarsening stage, a
amic fluctuating pattern seen inFig. 1. The snapsho

n Fig. 1are taken from computations at different te
eratures. One can observe significant nucleation
seen as flickering of single cells in “hostile” surrou
ngs) at high temperatures, while at low temperat
rid-induced anisotropy causes predominant alignm
f domain boundaries along the coordinate axes.
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Fig. 1. Snapshots of patterns of the binary variableu obtained at high and low temperatures. Black areas correspond tou = −1, and white, to
u = 1. Initial conditions:v(x, y) = 0 andu(x, y) distributed randomly between−1 and 1. Parameters:γ �t = 0.006,εµ = 0.14, ν = 0,J = 1.
Grids foru andv: 250× 250 nodes.

temperature runs are most representative as analogs of
a continuous system with added noise. The average do-
main size increases with decreasingγ �t, as seen by
comparingFig. 2(a) and (b). The patterns of the binary

Fig. 2. Snapshots of patterns of the binary variableu obtained at high and low temperatures. Black areas correspond tou = −1, and white, to
u ly betw
f

variableu in these figures have been obtained in long
simulation runs at different values ofγ �t. The change
of a typical domain size is expressed quantitatively by
the energy plots inFig. 2(c).
= 1. Initial conditions:v(x, y) = 0 andu(x, y) distributed random
or u andv: 500× 500 nodes.
een−1 and 1. Parameters:T = 0.8, εµ = 0.14,ν = 0,J = 1. Grids
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Fig. 3. Snapshots of a moving spot at a moderate temperature. The levels of the inhibitor fieldv are shown in gray scale (dark area, lowv;
light area, highv). The interphase boundary for the binary variable is shown by black contour (u = −1 inside the spot,u = 1 outside; crosses
mark “defects”, single cells withu = −1 in theu = 1 area). Initial conditions:v(x, y) = 0, u = −1 inside andu = 1 outside a circular spot.
Parameters:γ �t = 0.006,εµ = 0.14ν = 0, J = 1, T = 0.8. Grids foru andv: 250× 250 nodes.

While the number of cells in the “up” and “down”
state remains approximately equal, the domains shift
perpetually due to a slow drift of the level of the in-
hibitor v in each cell in the direction unfavorable to its
current state. The direction of shift of domain bound-
aries is history-dependent at each location. This is seen
by comparing the consecutive snapshots inFig. 3. The
boundary of the “down” state, shown by the solid line,
advances where it passes through the regionv > 0
(shown in lighter gray level) and recedes where it passes
through the regionv < 0 (shown in darker gray level).
This, in turn, depends on the history of the respective
locations, which, in the former case, had long been in
the “up” and, in the latter case, in the “down” state.

The structures formed following a transition be-
tween alternative states of the binary variable localized
in a compact region are typical for excitable systems.
The snapshots inFig. 3 show evolution starting from
a spot of the “down” state. The spot is set into motion

F ed at m t
v ial con
a ru and

in a direction randomly selected under the influence of
fluctuations, and keeps moving into the region of large
vwidening into a boomerang shape and leaving behind
a relaxation trail of largev.

More distinct spiral waves are obtained in an asym-
metric system withν > 0, which introduces a bias in
favor of negative values ofv and, hence, the “up” state
of u. This causes the regions of “down” state to be rel-
atively narrow. Patterns of broken and distorted spiral
waves typical for these conditions are shown inFig.
4; take note that the excited domains become thicker
when the inhibitor slows down, i.e. at smaller values of
γ �t.

5. Coupling to long-scale inhibitor

The Ising model coupled to long-scale inhibitor gen-
erates Turing patterns and solitary objects similar to the
ig. 4. A distorted spiral wave pattern of the binary variableu obtain
alues ofγ �t. Black areas correspond tou = −1, whiteu = 1. Init
nd 1. Parameters:εµ = 0.14,εν = 0.03,J = 1, T = 0.8. Grids fo
oderate temperatures with a non-zero bias parameterν and differen
ditions:v(x, y) = 0 andu(x, y) is distributed randomly between−1
v: 1000× 1000.
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Fig. 5. Diagrams in the (µ, ν) and (µ, γ �t) planes showing different dynamical behaviour in a system with a long-scale inhibitor. Initial
conditions:v(x, y) = −1, u = −1 inside andu = 1 outside a circular spot. Fixed parameters:ε = 0.2, J = 1, T = 1,D = 1; γ �t = 0.1 (a),
ν = 0.15 (b).

reaction–diffusion model(1), (9), but shows a larger va-
riety of behavior due to the impact of intrinsic noise.
Fig. 5(a)summarizes the results of a number of sim-
ulation runs at different values ofµ andν and fixed
values of other parameters and with identical initial
conditions, with the “down” state inside a circle of a
fixed radius and the “up” state elsewhere. Four para-
metric domains with distinct dynamic behavior are dis-

Fig. 6. Fluctuations of the aream (a) and interfacial energyE (b) of a wandering spot (Region II) at different inhibitor diffusivities:D = 12.5
(upper curves) andD = 6.25 (lower curves). (c) Trajectory of the center of mass of the spot atD = 6.25. Parameters:ε = 0.2, J = 1, T = 1,
µ = 0.55ν = 0.15;u-grid: 250× 250 nodes;v-grid: 50× 50 nodes.

tinguished here:

I The spot disappears—no non-uniform asymptotic
states.

II A wandering and breathing spot persists.
III “Wormlike” moving segments persist.
IV “Worms” grow, branch out, and split, leading to a

distorted striped or labyrinthine pattern.
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Fig. 7. Two scenarios for interacting spots under conditions corresponding to Region II. The levels of the inhibitor fieldv are shown in gray
scale (dark area, lowv; light area, highv). The interphase boundary for the binary variable is shown by black contour (u = −1 inside the spots,
u = 1 outside). Parameters:ε = 0.2, J = 1, T = 14,D=6.254,µ = 0.55,ν = 0.15;u-grid: 250× 250 nodes;v-grid: 50× 50 nodes.

A similar diagram in the plane (µ, γ �t) is shown in
Fig. 5(b). As in the reaction–diffusion model, coupling
to the inhibitor acts, generally, in the way opposite to
the action of surface tension. As a result, formation of
stretched structures and splitting are favored at larger
µ. Patterned states disappear when the response of the
inhibitor becomes too slow.

It should be noted that the diagrams inFig. 5do not
exhaust the variety of behavior of the hybrid model,

itions
ndar .
aram

which may be additionally modified by changing tem-
perature and the scale ratioε. The boundaries between
the Regions I–IV are approximate, as, due to the in-
trinsic noise, transitions between different types of be-
havior are smooth and there are no sharp bifurcation
lines. In all computations described in this Section,
nucleation of single cells with a state differing from
all four neighbors is suppressed. This does not signif-
icantly influence the dynamic behavior, except elimi-
corresponding to Region III. The levels of the inhibitor fieldv are shown
y is shown by black contour (u = −1 inside the worm,u = 1 outside)
eters:ε = 0.2,J = 1,T = 1,D = 6.25,µ = 0.65,ν = 0.15;u-grid:
Fig. 8. (a) Snapshots showing evolution of a “worm" under cond
in gray scale (dark area, lowv; light area, highv). The interphase bou
(b,c) Fluctuations of the aream and interfacial energyE of the worm. P
500× 500 nodes;v-grid: 100× 100 nodes.
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Fig. 9. Snapshots of patterns of the binary variableu obtained under conditions corresponding to Region IV. Black areas correspond tou = −1,
and white, tou = 1. Parameters:ε = 0.2, J = 1,D = 6.25,µ = 0.9, ν = 0.15. (a) A segmented pattern obtained through repeated splitting of
a large spot at a high temperature (T = 1); u-grid: 500× 500 nodes;v-grid: 100× 100 nodes. (b) A labyrinthine pattern obtained starting from
four large spots at a low temperature (T = 0.7); u-grid: 2000× 2000 nodes;v-grid: 400× 400 nodes.

nating “flickering” far from interphase boundaries, but
considerably speeds up the computation.

One can see inFig. 6 that the size and interfacial
energy of a wandering spot in Region II remain, on the
average, constant, while the spot undergoes Brownian
motion in the plane. This solitary structure is an analog
of a stationary, rather than a moving spot in the FN sys-
tem; there is no persistent direction of motion, and no
apparent asymmetry in the shape of the spot and distri-
bution of the inhibitor in its surroundings. The position,
as well as size fluctuations are caused by the intrinsic
noise and decrease with growing spot size at larger val-
ues of the inhibitor diffusivity. This is not obvious in

Fig. 10. Effect of anisotropic interactions. Black areas correspond tou = −1, and white, tou = 1. (a) Isotropic structure; (b) weak anisotropy;
(c) strong anisotropy. Parameters:ε = 0.2, T = 1,D = 6.25,µ = 0.65,ν = 0.15;u-grid: 1000× 1000 nodes;v-grid: 200× 200 nodes.

plots of absolute values of the area and interfacial en-
ergy inFig. 6(a) and (b), but is revealed by comparing
the standard deviations (〈m2〉 − 〈m〉2)/〈m〉2 = 0.0302
for D = 6.25 and 0.0172 forD = 12.5.

Fig. 7illustrates interaction of two spots, which may,
under identical conditions, either attract and merge or
repel, dependent on the random factors.

The dynamics of a typical “worm” in Region III is
illustrated byFig. 8showing evolution starting from a
circular spot and growing gradually into a wandering
and bending stripe. In Region IV “worms” branch out
and divide, spreading gradually into a pattern cover-
ing the entire plane. The same pattern can be formed
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as a result of repeated splitting of a large spot, fol-
lowed by spreading and multiplication of “worms”.
At higher temperatures, repeated splitting, leads to a
segmented pattern, as inFig. 9(a). At lower temper-
atures, splitting is suppressed, and persistent growth
and branching leads to a labyrinthine pattern, as in
Fig. 9(b). Take note that the patches grown out of four
spots in this computation remained separated, since
splitting of domains occupied by the background “up”
state, requiring activation, is also suppressed at low
temperatures.

Fig. 10illustrates the effect of anisotropic interac-
tions withJ different for nearest neighbor cells in the
“vertical” and “horizontal” directions. The computa-
tions were carried out under splitting conditions (Re-
gion IV). As anisotropy grows, splitting is suppressed,
and the stripes stretch along the direction with a higher
interaction strength in a way similar to that observed
in reaction–diffusion computations[18].

6. Conclusions

The models described above reproduce princi-
pal features of the non-equilibrium reaction–diffusion
models of FN type, but show a wider variety of behav-
ior due to the influence of intrinsic noise. The hybrid
algorithm is very fast, and allows us to study the influ-
ence of various factors, such as scale ratios, coupling
strength, bias, temperature (level of noise), anisotropy,
e ging
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